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Abstract This paper will explore the relationship between sensory accuracy and Si-
multaneous Localization and Mapping (SLAM) performance. As inexpensive robots
are developed with commodity components, the relationship between performance
level and accuracy will need to be determined. Experiments are presented in this pa-
per which compare various aspects of sensor performance such as maximum range,
noise, angular precision, and viewable angle. In addition, mapping results from three
popular laser scanners (Hokuyo’s URG and UTM30, as well as SICK’s LMS291)
are compared.

1 Introduction

Robots are ideally suited for exploration tasks in dangerous environments such as a
disaster site or urban counter-insurgency operations. Simultaneous Localization and
Mapping (SLAM) techniques can be used to build maps which can be shared with
emergency workers or soldiers as the robots complete their exploration mission [5].
Projects such as the Micro Autonomous System Technologies Collaborative Tech-
nology Alliance (MAST CTA) [1] are working to develop techniques and compo-
nents to enable robot mapping with low power and small form factor robots and
sensors. MAST’s mission is to develop robots which are autonomous and collabo-
rate to provide situational awareness in urban environments for military and rescue
operations. MAST platforms are required to have a small form factor and long op-
erational availability, so we must understand where compromises can be made on
sensor performance.
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There is a need to determine what level of performance is needed from sensors
to enable SLAM techniques to deliver a map of sufficient quality after autonomous
exploration of an unknown environment. Sensors such as laser scanners are avail-
able in laboratory applications but other sensory modalities such as radar or vision
may be preferred when considering cost levels, power usage, and size. Some of
the accuracy, density, annular confinement, and field of view assumptions which
are common with laser scanners might no longer be valid with these other sensory
modalities. Low cost radar based scanners are currently under development as part
of the MAST project; until these are available, we will simulate the performance of
radar in software using data from laser scanners. To investigate the effects of vari-
ous properties of a sensor on the mapping result, we use high quality laser data and
degrade properties such as the maximum range, angular resolution, field-of-view, or
range accuracy. We call this de-featuring the data. The performance requirements
for robot mapping must be determined to guide the development of these new minia-
turized radar scanners to ensure that they will work well for the robot mapping task.

A comparison of related works is presented in section 2. The technical details of
our algorithms are presented in section 3. The experimental procedure is presented
in section 5 and results are analyzed in section 6. Some of the more interesting
results are explored in section 7.

2 Related Works

The Extended Kalman Filter (EKF) was first used for mobile robot localization in [7]
and [8] with an a priori map. These techniques were extended by Smith et.al. in [20]
by including the landmark positions in the state vector to produce one of the first
viable solutions to the SLAM problem. A thorough review of the early approaches
to the SLAM problem can be found in the summary paper by Durrant-Whyte and
Bailey [11]. Their second summary paper gives an overview of the state-of-the-art
approaches to the SLAM problem [4].

The computer vision community has developed Structure from Motion (SFM)
techniques to solve an analogous problem to SLAM. These techniques maintain
the entire robot trajectory instead of marginalizing out all but the last pose; some
techniques such as bundle adjustment solve for all relevant parameters simultane-
ously [2]. Landmarks and poses remain uncorrelated by not marginalizing out the
robot trajectory, and can therefore be represented without forming an n2 covariance
matrix. This can result in a significantly more efficient algorithm. Solving for the
entire robot trajectory along with the map is called the full SLAM problem.

Nonlinear optimization techniques were used by Folkesson and Christensen in
[12] to close loops without linearization errors. Dellaert introduced Square Root
Smoothing and Mapping (SAM) which uses a sparse matrix representation to ef-
ficiently solve for landmark locations and the robot trajectory in [9] and [10]. An
incremental version of this technique was further deveoped in [15] and [16] which
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use QR factorization and periodic reordering of the underlying matrix representation
to maintain real-time performance.

An objective benchmark for comparing SLAM algorithms was reported in [6].
This benchmark compares the incremental relative error along the robot’s trajectory
instead of comparing maps. This allows the authors to directly compare the results
between different algorithms or sensor types. Ground truth is generated by manually
aligning laser scans using ICP as an initial guess. We use the relative pose error
metric and ground truth generation method from this benchmarking paper to asses
SLAM performance levels under various sensor configurations.

Research has been reported on analysis of localization performance and sensing
characteristics. O’Kane and Lavalle proved that it is possible to localize in a known
map with a robot equipped with only a contact sensor and a compass in [19] and
[14]. The authors determined that it is impossible to localize a robot in a known map
if the compass is replaced with an angular odometer. In the SLAM domain, work has
been done to support simpler and less expensive sensor modalities. Bailey developed
techniques for delaying initialization of landmarks in bearing-only SLAM in [3]. A
paper by Müller et.al. relates the performance of their 6D SLAM algorithm to the
precision of their 3D laser scanner in [17].

3 Technical Approach

The mapper used in this paper is based upon the Georgia Tech Smoothing and Map-
ping (GTSAM) library. The GTSAM library optimizes a nonlinear factor graph of
robot measurements to recover the trajectory and map. This representation preserves
sparsity by maintaining the trajectory as well as the landmark positions within the
state vector. The GTsam library is based upon Dellaert’s Square Root SAM tech-
nique [9]. The nonlinear factor graph is composed of odometry factors between
subsequent poses and measurement factors between wall landmarks and poses. To
make a nonlinear factor, we need an error function and its derivatives. The im-
plementation for the odometry factor is provided by the GTSAM library through
generic programming for all objects which belong to a Lie group.

The nonlinear factor for wall landmark measurements relates the position of the
wall to the robot. Frequently, we cannot make a measurement of the entire length of
a wall from a single position due to limited range and environmental occlusion. We
have augmented GTSAM’s nonlinear factor representation with the M-space feature
representation [13] to allow for partial observation and to leverage multiple types of
landmarks for different applications.

The M-space feature representation is useful for expressing measurements of par-
tially observed objects, such as walls seen with limited range or with environmental
occlusion. The M-space representation effectively corrects based upon the infinite
line representation in this implementation. It is possible to upgrade this represen-
tation to include the endpoints as they are fully observed; however, this is reserved
for future work. Currently, the measurement correction corresponds to the angle
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and range to the wall, η = (φ ,ρ). Endpoints, along with angle and range, are used
for data association. The factor graph representation requires the Jacobians of these
measurements which are δη

δxr
and δη

δx f
where xr is the robot pose and x f is the global

landmark pose. The M-space feature representation uses the chain rule to represent
Jacobians in terms of smaller building blocks which are re-usable between different
types of features.

In the M-space feature representation, the Jacobians are broken down in terms of
local parameterizations of the landmarks (xo) to δη

δxr
= δη

δxo

δxo
δxr

. The transformation
from the local reference frame xo to the global frame x f is a simple rigid body
transformation. The Jacobian of this transformation is the derivative of these local

representation xo with respect to the robot pose xr which is δxo
δxr

=
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]
For completeness, the Jacobian Jηo for walls is provided here. Let
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Equation 1 is the Jacobian relating the error from the robot relative position with
respect to the landmark.

δη

δx f
=

δη

δxo

δxo

δx f
B̃ (2)

Equation 2 shows the overall Jacobian relating error from the global representation
with respect to the landmark. In this equation, B̃ is the binding matrix which projects
corrections from the M-space representation (φ ,ρ) to the endpoint representation
x f . In this way, the corrections will only be applied to the direction and distance of
the line, but not to the endpoints themselves. The M-space source paper [13] should
be consulted for more implementation details.

The feature detectors developed for this mapping application have been designed
to be robust to noise and performance degradation. We have chosen to extract line
segments from laser range data using a RANSAC technique described in [18]. First,
points which are at maximum range are eliminated from the scan. Pairs of points
are then chosen uniformly from the laser scan and a line hypothesis is made which
passes through these points. If enough other points are consistent with this line hy-
pothesis, then the inliers to the line hypothesis are used to form a more accurate
hypothesis. The inlier points are then removed from the laser scan so that each line
will be unique. This process is repeated for a number of iterations to ensure that we
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extract many of the lines in the scene. We have selected parameters such as mini-
mum line length and maximum gap which correspond to the size of walls and door
openings in a typical office environment.

The experiments in this paper were run on data collected from two types of mo-
bile robots and were processed offline to compare mapping performance with differ-
ent sensor accuracies. Though these techniques were compared in offline operation,
it should be noted that the mapper can comfortably run online on a modest CPU.

4 Experimental Design

The operation of the experimental framework is shown in figure 1. Ground truth was
generated by manual alignment of the full unaltered laser scan data in an initial run.
This serves as an adequate estimate of ground truth for the purpose of this relative
comparison of path trajectory error with different sensor performance levels. The
manual alignment tool can be seen in figure 2. It allows the operator to correct the
(x,y,θ) between two poses so that the laser scans come into alignment. This infor-
mation is then captured in a ground-truth file where it is compared to the posterior
relative displacements in the test run trajectories.

Stored robot data is replayed with various settings of laser scan data de-featuring.
The laser line extractor extracts line segments from the de-featured laser data and
sends it to the mapper. Once the run is complete, the robot trajectory from the map-
per is compared to the ground truth for this run. The average incremental absolute
error is then recorded for this run.

Laser line 
extractor

GTMapper

Stored run 
data

Software 
defeaturing

Laser 
scan data

Wheel 
odometry data

Ground truth 

Statistical 
anaysis

Fig. 1 The experimental setup.
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Fig. 2 The alignment tool used to generate ground truth trajectories. Poses illustrated in this figure
are displayed at a poor solution to illustrate operation.

5 Experiments

The first source of sensor data used in these experiments was a series of logs taken
from the Scarab robots developed at the University of Pennsylvania. An image of
the Scarab robot can be seen in figure 3. The Scarab is a differential drive mobile
robot equipped with a Hokuyo URG laser scanner. In this series of experiments, the
robot was tele-operated for ten runs in an indoor office environment to collect data
which is used for offline processing.

The laser scanner accuracy was de-featured for our analysis to determine what
level of performance in the mapping task can be expected with progressively sim-
pler (and therefore less expensive and lower power) sensors. All sensor values were
captured during the data collection phase and were de-featured with software in the
post-processing phase.

In the first round of experiments, several de-featuring modifications were made
to the laser scanner readings. First, the range of the scanner was restricted. Second,
the angular precision of the laser scanner was limited by omitting beams from the
line extraction process. Thirdly, the angle subtended by the laser scan was reduced.
Finally, the range accuracy of the sensor was corrupted by varying degrees of Gaus-
sian noise. This series of experiments will establish which parameters of the scanner
can be varied while still yielding sufficient performance in the mapping task.
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Fig. 3 The Scarab mobile robot developed at the University of Pennsylvania.

In the second experiment, the Georgia Tech robot ”Jeeves” was outfitted with
three different laser scanners to collect a run where each laser can be used to com-
pare the mapping results. The robot is a Segway RMP 200 modified to be statically
stable, as seen in figure 4. This platform is configured to simultaneously collect data
from the SICK LMS291, Hokuyo URG, and the Hokuyo UTM 30 laser scanners,
all of which are seen in the right of figure 4. This data is used individually in the
mapping process and the resultant relative errors are compared. In this experiment,
there is no need to de-feature the performance of the laser scanners in software since
each exhibits a unique price and performance level.

6 Results

In the first set of experiments, Scarab robots were driven along a similar trajectory
in an office building 10 times. Two of the runs were of poor quality due to wheel slip
on a thick concrete seam and were eliminated from the analysis. In figure 5 the mean
trajectory error is displayed from a series of test runs where the maximum range of
the laser scanner was varied from 5.6 meters down to 0.4 meters. 5.6 meters is the
maximum range of the Hokuyo URG laser scanner. It can be seen from this figure
that the performance is poor when the range is restricted to below 2 meters, but it
rapidly improves at longer ranges to a nearly constant level of performance. The



8 J. Rogers et.al.

Fig. 4 The Georgia Tech robot ”Jeeves”. Left: Full robot platform. Right-top(green): Hokuyo
UTM-30 laser scanner. 30 meter maximum range, 270 degree viewing angle, 0.25 degree angu-
lar resolution. Right-middle(magenta): Hokuyo URG laser scanner. 5.6 meter maximum range,
270 degree viewing angle, 1 degree angular resolution. Right-bottom(blue): SICK LMS291 laser
scanner. 80 meter maximum range, 180 degree viewing angle, 1 degree angular resolution.

residual incremental error (due to the inaccuracy in the odometry of the robot) is
reached as the range is restricted to 0.8m and below. This experiment indicates that
the accuracy of the mapper can be maintained until the range of the laser scanner is
restricted to about 1.6 meters, roughly the width of the hallways in the test site.

In figure 6 the mean trajectory error is displayed from a series of test runs where
progressively higher proportions of the laser beams are left out of the line extraction
process. This test is meant to simulate a sensor with less angular resolution than the
Hokuyo URG. It is apparent from the graph that until the resolution is lowered to
around 1 degree, the mapper is able to deliver a similar level of performance to the
results from the fully featured laser scan. This corresponds to throwing away 75%
of the data coming from the laser scanner. When the resolution is lowered below 1
degree, the accuracy drops to the level of the robot odometry alone.

In figure 7 the mean trajectory error is compared with various angles viewed by
the laser scanner. The default Hokuyo URG laser scanner can view 270 degrees.
This metric is meant to simulate a sensor which views a smaller angle. The viewing
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Fig. 5 Mean incremental heading error with various maximum range settings of laser scanner from
0.4m to 5.6m

angle is always faced towards the front as it is expected that the sensors would
need to observe this region in order to avoid hitting obstacles during autonomous
operation. This graph suggests that the mapper remains accurate until as little as 90
degrees is viewed from the laser scanner. This is probably due to the fact that in this
test the range was kept at its maximum value of 5.6 meters, so the mapper was still
able to see wall line segments. If the range was restricted while the angular view
was also restricted, then we would expect poor performance.

In figure 8 the mean trajectory error is displayed from a series of test runs where
Gaussian noise is added to the range measurements. The noise is sampled from a
Gaussian distribution with the variance indicated along the x-axis. It can be seen
from this figure that with even a moderate 2cm noise is added to the laser scan sig-
nificant error is introduced into the map. The mapper is particularly susceptible to
noise in the laser ranges, though it should be noted that this noise level is signifi-
cantly higher than a typical laser scanner.s

In the second experiment, the mapping results were compared with three differ-
ent laser scanners which are commonly used by the SLAM research community. An
example map is show in figure 10. The robot successfully closed the loop with each
of the laser scanners. The absolute relative incremental position and angular errors
can be seen in table 9. It can be seen with these results that the SICK and URG map-
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Fig. 6 Mean incremental heading error with various angular resolutions from 0.25 degrees to 2.5
degrees

ping results are pretty similar in displacement error, whereas the UTM30 is much
more accurate in recovering the relative displacements. This is to be expected since
the UTM30 slightly outperforms the SICK 291 laser scanner in angular resolution,
range accuracy, and speed.

7 Discussion

The longer range of the laser scanner appears to not be helping much in the office
environment. This indicates that the line extraction algorithm is working well when
even a small amount of the wall can be seen from the scanner, so the range of
the scanner doesn’t need to be much more than the width of the hallway in order to
achieve good performance. We believe that in general the range of the scanner needs
to be no more than such that it can see about 1 meter of the wall from the middle of
the hallway.

We were surprised to find that the mapper was so susceptible to range accuracy
given that our line extraction algorithm performs a least-squares fit to many laser
points and should be able to handle zero-mean noise. It should be noted that the
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Fig. 7 Mean incremental heading error with various maximum laser angles

noise levels explored here were relatively large and that the line extraction performs
very well for noise levels more typical of laser scanners. We believe that, with addi-
tional parameter tuning, the line extractor could be made to perform well with more
noise; so this technique should translate well to radar scans.

The angular resolution parameter is effectively reducing the range of the scanner
slightly because the missing resolution is causing gaps in the extracted lines beyond
a certain range. This prevents long lines from being extracted; however, we have
already determined that range much longer than the hallway width is not very im-
portant in the range test. We have now also determined that high angular resolution
is not needed to perform the mapping task well.

For the second experiment with the robot ”Jeeves”, we notice that the incremental
angular error is comparable between the SICK and UTM30 laser scanners, with the
URG performing slightly worse. We believe this is because the office environment
for the second experiment has larger, cluttered rooms for which the limited range
would often result in few measurements of the walls with the URG. The incremen-
tal displacement error seems to show that the UTM30 is performing better than
the SICK laser scanner. In our first experimental analysis we determined that the
mapping results are particularly susceptible to range accuracy, but the The UTM30
claims a ±30mm range accuracy whereas the SICK claims a ±35mm range accu-
racy. There is only 5mm difference here so this is likely not the main cause. It is
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Fig. 8 Mean incremental heading error with various amounts of Gaussian noise added to laser
ranges with variance up to 10cm

Error URG SICK UTM-30
Position error 0.020162 0.020942 0.009785
Angular error 0.009924 0.006612 0.007033

Fig. 9 Absolute incremental position and orientation error for test comparing performance of map-
ping with three typical laboratory laser scanners

more likely that the extended viewing angle combined with the longer range of the
UTM30 is allowing the robot to observe both the walls behind it as well as those in
front of it for a significant portion of the run. The SICK can only see in front of the
robot and is therefore only correcting based on the walls in front – it cannot see the
wall behind the robot as it passes through a doorway. We think that this effect was
not seen in the first experiment with the Scarab robots because they were operated
in an environment with narrow corridors and few larger rooms. The Scarab robots
never had the opportunity to pass through doorways and therefore could not benefit
from this effect.

Based on these results, we determine that the Hokuyo UTM30 is the ideal laser
scanner for use in environments with larger open spaces. It has additional advantages
over the LMS291 laser scanner, namely size and power usage. In environments with
more confined spaces, the Hokuyo URG performs well enough to make useful maps.
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Fig. 10 The map of the the corridors in our lab. There are two large storage rooms in the lower
right. The map is shown as an occupancy grid only for display purposes – all measurements are
made based on wall features.
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